skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Agrawal, Animesh"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. State-of-the-art (SOTA) weight-shared SuperNets dynamically activate subnetworks at runtime, enabling robust adaptive inference under varying deployment conditions. However, we find that adversaries can take advantage of the unique training and inference paradigms of SuperNets to selectively implant backdoors that activate only within specific subnetworks, remaining dormant across billions of other subnetworks. We present VillainNet (VNET), a novel poisoning methodology that restricts backdoor activation to attacker-chosen subnetworks, tailored either to specific operational scenarios (e.g., specific vehicle speeds or weather conditions) or to specific subnetwork configurations. VNET's core innovation is a novel, distance-aware optimization process that leverages architectural and computational similarity metrics between subnetworks to ensure that backdoor activation does not occur across non-target subnetworks. This forces defenders to confront a dramatically expanded search space for backdoor detection. We show that across two SOTA SuperNets, trained on the CIFAR10 and GTSRB datasets, VNET can achieve attack success rates comparable to traditional poisoning approaches (approximately 99%), while significantly lowering the chances of attack detection, thereby stealthily hiding the attack. Consequently, defenders face increased computational burdens, requiring on average 66 (and up to 250 for highly targeted attacks) sampled subnetworks to detect the attack, implying a roughly 66-fold increase in compute cost required to test the SuperNet for backdoors. 
    more » « less
    Free, publicly-accessible full text available November 19, 2026
  2. CNNs are increasingly deployed across different hardware, dynamic environments, and low-power embedded devices. This has led to the design and training of CNN architectures with the goal of maximizing accuracy subject to such variable deployment constraints. As the number of deployment scenarios grows, there is a need to find scalable solutions to design and train specialized CNNs. Once-for-all training has emerged as a scalable approach that jointly co-trains many models (subnets) at once with a constant training cost and finds specialized CNNs later. The scalability is achieved by training the full model and simultaneously reducing it to smaller subnets that share model weights (weight-shared shrinking). However, existing once-for-all training approaches incur huge training costs reaching 1200 GPU hours. We argue this is because they either start the process of shrinking the full model too early or too late. Hence, we propose Delayed Epsilon-Shrinking (DepS) that starts the process of shrinking the full model when it is partially trained, which leads to training cost improvement and better in-place knowledge distillation to smaller models. The proposed approach also consists of novel heuristics that dynamically adjust subnet learning rates incrementally, leading to improved weight-shared knowledge distillation from larger to smaller subnets as well. As a result, DepS outperforms state-of-the-art once-for-all training techniques across different datasets including CIFAR10/100, ImageNet-100, and ImageNet-1k on accuracy and cost. It achieves higher ImageNet-1k top1 accuracy or the same accuracy with 1.3x reduction in FLOPs and 2.5x drop in training cost (GPU*hrs). 
    more » « less
  3. Neural Architecture Search (NAS) for Federated Learning (FL) is an emerging field. It automates the design and training of Deep Neural Networks (DNNs) when data cannot be centralized due to privacy, communication costs, or regulatory restrictions. Recent federated NAS methods not only reduce manual effort but also help achieve higher accuracy than traditional FL methods like FedAvg. Despite the success, existing federated NAS methods still fall short in satisfying diverse deployment targets common in on-device inference including hardware, latency budgets, or variable battery levels. Most federated NAS methods search for only a limited range of neuro-architectural patterns, repeat them in a DNN, thereby restricting achievable performance. Moreover, these methods incur prohibitive training costs to satisfy deployment targets. They perform the training and search of DNN architectures repeatedly for each case. SuperFedNAS addresses these challenges by decoupling the training and search in federated NAS. SuperFedNAS co-trains a large number of diverse DNN architectures contained inside one supernet in the FL setting. Post-training, clients perform NAS locally to find specialized DNNs by extracting different parts of the trained supernet with no additional training. SuperFedNAS takes O(1) (instead of O(N)) cost to find specialized DNN architectures in FL for any N deployment targets. As part of SuperFedNAS, we introduce MaxNet—a novel FL training algorithm that performs multi-objective federated optimization of DNN architectures (≈5∗108) under different client data distributions. SuperFedNAS achieves upto 37.7\% higher accuracy or upto 8.13x reduction in MACs than existing federated NAS methods. 
    more » « less
  4. Abstract While various sensors have been deployed to monitor vehicular flows, sensing pedestrian movement is still nascent. Yet walking is a significant mode of travel in many cities, especially those in Europe, Africa, and Asia. Understanding pedestrian volumes and flows is essential for designing safer and more attractive pedestrian infrastructure and for controlling periodic overcrowding. This study discusses a new approach to scale up urban sensing of people with the help of novel audio-based technology. It assesses the benefits and limitations of microphone-based sensors as compared to other forms of pedestrian sensing. A large-scale dataset called ASPED is presented, which includes high-quality audio recordings along with video recordings used for labeling the pedestrian count data. The baseline analyses highlight the promise of using audio sensors for pedestrian tracking, although algorithmic and technological improvements to make the sensors practically usable continue. This study also demonstrates how the data can be leveraged to predict pedestrian trajectories. Finally, it discusses the use cases and scenarios where audio-based pedestrian sensing can support better urban and transportation planning. 
    more » « less